2022-01-11 48

简单的缩放达到了极限
经过几十年的发展,摩尔的预测基本上被证明是正确的,但到了现在它终于即将达到极限。因为经过验证的MOSFET作为芯片上的开关,其尺寸的逐渐缩小不再起作用:“大约15年前,人们意识到简单的缩放已经达到了极限,”Heike Riel博士说到,他是瑞士Rüschlikon IBM研究中心的IBM研究员,“这就是为什么制造商首先用所谓的高k材料取代二氧化硅作为晶体管的绝缘材料,同时保持相同的MOSFET几何形状,因为只有这样才有可能制造出45nm芯片。”
GAAFET晶体管
现在,新型晶体管也已经出现。从5nm开始,GAAFET(全栅FET)将接管芯片中的工作。Riel解释说:“在GAAFET中,源极和漏极之间的导电通道由几条平行的硅纳米线组成,每条纳米线都被栅电极完全包围。”这不仅是控制电流的最佳几何形状,还节省了芯片上的空间,因为形成晶体管沟道的几个纳米线结构是相互叠加的。未来,汽车应用也将受益于GAAFET等技术的发展,新型、强大的HCPs无论作为许多分散控制单元继承者,还是用于自动驾驶的特殊处理器,都依赖于具有高计算能力的芯片。但是从长远来看,即使GAAFET也无法挽救摩尔定律:3nm过后,器件将变得紧凑,并在未来三到四年内也将达到极限。

目前还没有明确的新型晶体管
因此人们开始寻找一种新型晶体管,可以进一步提高未来电子电路的性能。IBM研究人员Riel列出了一系列MOSFET替代品,包括碳纳米管场效应晶体管(CNFET)和隧道场效应晶体管(TFET)。在CNFET中,电流流经微小的碳管。今年,麻省理工学院的研究人员表示,这种快速节能的开关可以在传统的芯片工厂中生产。TFET在设计上类似于传统晶体管,但在开关方面利用了量子力学隧道效应,既节能又快捷。CNFET、TFET或任何其他方法是否会赢得比赛是完全开放的。Riel说:“目前有很多研究,但没有明确的领先者来取代优化的硅MOSFET。”
新型芯片和计算机架构

存内计算
村内计算旨在消除普通计算机中计算单元和内存的空间分离,有望实现更高的计算能力和能量效率,也可以消除微处理器和RAM之间字节传输的耗时和耗能。例如,神经网络中的向量矩阵计算可以使用crossbar architecture(模拟而非数字)来执行。在这种方法中,两束水平和垂直的线交叉,每一束都作为神经网络的输入和输出。在它们的交点上,这些线通过表示神经网络的加权因子(“知识”)的非易失性存储器元件彼此连接。神经网络的输入值作为模拟电压值应用到水平线上,计算结果几乎可以在垂直线上即时获得,也可以以模拟形式获得,并且不需要任何数据传输。
MOSFET, FinFET and GAAFET

未来传统晶体管设计的替代品

摩尔定律
五十多年前,戈登•摩尔(Gordon Moore)在《电子学》(Electronics)杂志上做了一个引人注目的预测,当时还是仙童半导体研究主管、后来成为英特尔(Intel)联合创始人的他在1965年断言,未来每个芯片上的晶体管数量将每年翻一番。因此,早在1975年,一个小硅片上就可以容纳大约65000个这样的芯片。虽然“摩尔定律”在过去几年里不断被修改,但原则上被证明是正确的,并已成为半导体制造商的指导方针:直到今天,他们也一而再再而三成功地在短时间内使单位面积上的晶体管数量翻倍。然而未来这将不可能发生,芯片的更高性能必须通过其他方式来实现。
简而言之
MOSFET晶体管及其变种FinFET和GAAFET的进一步小型化很可能在未来几年达到其极限。为了使芯片在未来变得更加强大,科学家和工业界正在研究新的晶体管设计,如隧道场效应管,以及新的架构,如内存计算。
如有侵权,请联系删除。